nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.56 243-252
风机叶片绿色再生纤维钎增强水工混凝土力学性能研究
基金项目(Foundation): 国家自然科学基金项目(52379127); 青海大学青年基金项目(42162024)
邮箱(Email): yu2017@qhu.edu.cn;
DOI: 10.13928/j.cnki.wrahe.2025.08.018
摘要:

【目的】为解决风机广泛使用及其容量不断迭代过程中叶片(玻璃纤维增强聚合物,GFRP)绿色回收和再生利用难题,通过机械加工方法将退役风机叶片制备成纤维钎并验证其应用于水工混凝土中的可行性。【方法】采用宏观、微观和声发射等方法研究不同纤维钎长度、掺量对混凝土和易性、抗压强度、抗折强度和断裂损伤的影响。【结果】结果表明:60 mm长度0.5%体积掺量纤维钎使得混凝土抗压强度最大提升21.35%,而80 mm长度1.5%体积掺量使得抗压性能降低了10.42%;混凝土抗折强度获得了21.93%~105.6%不等的提升;声发射(AE)信号显示随着纤维长度和掺量增加声发射事件数目显著增多,且集中分布于跨中和裂纹附近,同时断裂面不平整、裂缝表现的更为曲折。【结论】风机叶片再生纤维钎与水泥基体机械结合作用较好,能够发挥有效的桥接作用,应用于水工混凝土中的可行性较强,可预见其规模化回收与利用具有较为广阔的发展前景。

Abstract:

To address the challenges associated with the green recycling and reuse of blades(Glass Fiber Reinforced Polymer, GFRP) in the widespread use of wind turbines and their continuous capacity iteration processes, decommissioned wind turbine blades were processed into fiber rods through mechanical method, and their feasibility of application in hydraulic concrete was verified. Macroscopic, microscopic, and acoustic emission(AE) method were employed to investigate the effects of different fiber rod lengths and dosages on the workability, compressive strength, flexural strength, and fracture damage of concrete. The result indicate that a 60 mm-long fiber rod with a 0.5% volume dosage maximally enhanced the compressive strength of concrete by 21.35%, while an 80 mm-long fiber rod with a 1.5% volume dosage reduced the compressive performance by 10.42%. The flexural strength of concrete was enhanced by varying degrees ranging from 21.93% to 105.6%. AE signals revealed that the number of acoustic emission events significantly increased with the increase in fiber length and dosage, and these events were concentrated near the mid-span and cracks. Additionally, the fracture surfaces were uneven, and the cracks appeared more tortuous. Therefore, the mechanical bonding between the recycled fiber rods of wind turbine blades and the cement matrix is effective, exhibiting a strong bridging function. The feasibility of their application in hydraulic concrete is strong, and it is foreseeable that their large-scale recycling and utilization hold broad development prospects.

参考文献

[1] Global Wind Energy Council.GWEC Global Wind Report 2023[R/OL].Brussels,Belgium:Global Wind Energy Council,2023.https://gwec.net/global-wind-report-2023/.

[2] 严新荣,张宁宁,马奎超,等.我国海上风电发展现状与趋势综述[J].发电技术,2024,45(1):1-12.YAN Xinrong,ZHANG Ningning,MA Kuichao,et al.Overview of current situation and trend of offshore wind power development in China[J].Power Generation Technology,2024,45(1):1-12.

[3] BATURKIN D,HISSEINE O A,MASMOUDI R,et al.Valorization of recycled FRP materials from wind turbine blades in concrete[J].Resources,Conservation and Recycling,2021,174:105807.DOI:10.1016/j.resconrec.2021.105807.

[4] 马文静,张宇彤,杨春振,等.大宗风电退役风机叶片资源化回收利用技术研究进展[J].洁净煤技术,2023,29(10):17-26.DOI:10.13226/j.issn.1006-6772.CN23053101.MA Wenjing,ZHANG Yutong,YANG Chunzhen,et al.Progress of resourceful recycling technology of retired wind turbine blades for bulk wind power[J].Clean Coal Technology,2023,29(10):17-26.DOI:10.13226/j.issn.1006-6772.CN23053101.

[5] 许淳瑶,葛立超,冯红翠,等.风力发电现状及叶片组成与回收利用综述[J/OL].热力发电,2022,51(9):29-41.DOI:10.19666/j.rlfd.202204082.XU Chunyao,GE Lichao,FENG Hongcui,et al.An overview of the current status of wind power generation and the composition and recycling of blades[J/OL].Thermal Power Generation,2022,51(9):29-41.DOI:10.19666/j.rlfd.202204082.

[6] TITTARELLI F,MORICONI G.Use of GRP industrial by-products in cement based composites[J/OL].Cement and Concrete Composites,2010,32(3):219-225.DOI:10.1016/j.cemconcomp.2009.11.005.

[7] 余丹,孙永斌,杨琦,等.风机叶片回收技术现状与展望[J/OL].南方能源建设,2023,10(4):113-121.DOI:10.16516/j.gedi.issn2095-8676.2023.04.011.YU Dan,SUN Yongbin,YANG Qi,et al.Status and prospect of wind turbine blade recycling technology[J/OL].Southern Energy Construction,2023,10(4):113-121.DOI:10.16516/j.gedi.issn 2095-8676.2023.04.011.

[8] 张聪慧.南山水库面板堆石坝混凝土面板防裂技术[J].西北水电,2012(3):34-38.ZHANG Conghui.Anti-cracking technology for concrete panels of Nanshan Reservoir panel rockfill dam[J].Northwest Hydropower,2012(3):34-38.

[9] 王振波,周潮,王家赫,等.高延性水泥基材料(ECC)开裂后渗透性研究综述[J].水利发展研究,2024,24(6):59-64.WANG Zhenbo,ZHOU Chao,WANG Jiahe,et al.Summary of research on the permeability of Engineered Cementitious Composites(ECC) after cracking[J].Water Resources Development Research,2024,24(6):59-64.

[10] 周茗如,樊乐涛,于景龙,等.基于平板法纤维混凝土早期抗裂性能试验研究[J].硅酸盐通报,2016,35(8):2590-2595.ZHOU Mingru,FAN Le Tao,YU Jinglong,et al.Experimental study on early cracking resistance of fibre concrete based on flat slab method[J].Silicate Bulletin,2016,35(8):2590-2595.

[11] 张紫键,姚占全,马快乐.钢纤维类型对玄武岩纤维混凝土力学性能的影响[J].排灌机械工程学报,2024,42(6):598-604.ZHANG Zijian,YAO Zhanquan,MA Kuaile.Influence of steel fiber type on mechanical properties of basalt fiber concrete[J].Journal of Drainage and Irrigation Machinery Engineering,2024,42(6):598-604.

[12] ZHANG W,YU H,YIN B,et al.Sustainable transformation of end-of-life wind turbine blades:Advancing clean energy solutions in civil engineering through recycling and upcycling[J].Journal of Cleaner Production,2023,426:139184.

[13] SPINI F,BETTINI P.End-of-Life wind turbine blades:Review on recycling strategies[J/OL].Composites Part B:Engineering,2024,275:111290.DOI:10.1016/j.compositesb.2024.111290.

[14] HUANG B T,ZHU J X,WENG K F,et al.Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC):Material design and effect of fiber hybridization[J/OL].Cement and Concrete Composites,2022,129:104464.DOI:10.1016/j.cemconcomp.2022.104464.

[15] XU G T,LIU M J,XIANG Y,et al.Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J/OL].Journal of Cleaner Production,2022,379:134550.DOI:10.1016/j.jclepro.2022.134550.

[16] CAGGIANO A,FOLINO P,LIMA C,et al.On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fibers[J/OL].Construction and Building Materials,2017,147:286-295.DOI:10.1016/j.conbuildmat.2017.04.160.

[17] MERLI R,PREZIOSI M,ACAMPORA A,et al.Recycled fibers in reinforced concrete:A systematic literature review[J/OL].Journal of Cleaner Production,2020,248:119207.DOI:10.1016/j.jclepro.2019.119207.

[18] ASOKAN P,OSMANI M,PRICE A D F.Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites[J/OL].Journal of Cleaner Production,2009,17(9):821-829.DOI:10.1016/j.jclepro.2008.12.004.

[19] CORREIA J R,ALMEIDA N M,FIGUEIRA J R.Recycling of FRP composites:reusing fine GFRP waste in concrete mixtures[J/OL].Journal of Cleaner Production,2011,19(15):1745-1753.DOI:10.1016/j.jclepro.2011.05.018.

[20] YAZDAN-BAKHSH A,C.BANK L,CHEN C.Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete[J/OL].Construction and Building Materials,2016,121:278-284.DOI:10.1016/j.conbuildmat.2016.05.165.

[21] YAZDAN-BAKHSH A,BANK L C,RIEDER K A,et al.Concrete with discrete slender elements from mechanically recycled wind turbine blades[J/OL].Resources,Conservation and Recycling,2018,128:11-21.DOI:10.1016/j.resconrec.2017.08.005.

[22] LIU P,BARLOW C Y.The environmental impact of wind turbine blades[J/OL].IOP Conference Series:Materials Science and Engineering,2016,139:012032.DOI:10.1088/1757-899X/139/1/012032.

[23] 许淳瑶,葛立超,冯红翠,等.风力发电现状及叶片组成与回收利用综述[J/OL].热力发电,2022,51(9):29-41.DOI:10.19666/j.rlfd.202204082.Xu Chunyao,Ge Lichao,Feng Hongcui,et al.An overview of the current status of wind power generation and the composition and recycling of blades[J/OL].Thermal Power Generation,2022,51(9):29-41.DOI:10.19666/j.rlfd.202204082.

[24] FONTE R,XYDIS G.Wind turbine blade recycling:An evaluation of the European market potential for recycled composite materials[J/OL].Journal of Environmental Management,2021,287:112269.DOI:10.1016/j.jenvman.2021.112269.

[25] RAHIMIZADEH A,KALMAN J,FAYAZBAKHSH K,et al.Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing[J/OL].Composites Part B:Engineering,2019,175:107101.DOI:10.1016/j.compositesb.2019.107101.

[26] ZHOU K,LEI D,CHUN P jo,et al.Evaluation of BFRP strengthening and repairing effects on concrete beams using DIC and YOLO-v5 object detection algorithm[J/OL].Construction and Building Materials,2024,411:134594.DOI:10.1016/j.conbuildmat.2023.134594.

[27] RAHIMIZADEH A,KALMAN J,FAYAZBAKHSH K,et al.Recycling of fiberglass wind turbine blades into reinforced filaments for use in additive manufacturing[J/OL].Composites Part B:Engineering,2019,175:107101.DOI:10.1016/j.compositesb.2019.107101.

[28] CUNLIFFE A M,JONES N,WILLIAMS P T.Pyrolysis of composite plastic waste[J/OL].Environmental Technology,2003,24(5):653-663.DOI:10.1080/09593330309385599.

[29] KUMAR R,SADEGHI K,JANG J,et al.Mechanical,chemical,and bio-recycling of biodegradable plastics:A review[J/OL].Science of The Total Environment,2023,882:163446.DOI:10.1016/j.scitotenv.2023.163446.

[30] COUSINS D S,SUZUKI Y,MURRAY R E,et al.Recycling glass fiber thermoplastic composites from wind turbine blades[J/OL].Journal of Cleaner Production,2019,209:1252-1263.DOI:10.1016/j.jclepro.2018.10.286.

[31] REN D,LIU B,CHEN S,et al.Visualization of acoustic emission monitoring of fracture process zone evolution of mortar and concrete beams under three-point bending[J/OL].Construction and Building Materials,2020,249:118712.DOI:10.1016/j.conbuildmat.2020.118712.

[32] BAHORIA B V,PARBAT D K,NAGARNAIK P B.XRD analysis of natural sand,quarry dust,waste plastic (LDPE) to be used as a fine aggregate in concrete[J/OL].Materials Today:Proceedings,2018,5(1):1432-1438.DOI:10.1016/j.matpr.2017.11.230.

[33] LOKESH G,NANTHAKUMAR P,AISHWARYA N,et al.Experimental study of the effect of water reducing admixtures on concrete[J/OL].Materials Today:Proceedings,2023[2024-09-11].https://www.sciencedirect.com/science/article/pii/S22147 85323027876.DOI:10.1016/j.matpr.2023.05.163.

[34] PAKTIAWAL A,ALAM M.Alkali-resistant glass fiber high strength concrete and its durability parameters[J/OL].Materials Today:Proceedings,2021,47:4758-4766.DOI:10.1016/j.matpr.2021.05.668.

[35] WANG Y,HUANG H,ZENG J,et al.Axial compressive behavior of recycled ceramic coarse aggregate concrete-filled steel tubular columns[J/OL].Journal of Constructional Steel Research,2023,210:108040.DOI:10.1016/j.jcsr.2023.108040.

[36] XU X,JIN Z,YU Y,et al.Damage source and its evolution of ultra-high performance concrete monitoring by digital image correlation and acoustic emission technologies[J/OL].Journal of Building Engineering,2023,65:105734.DOI:10.1016/j.jobe.2022.105734.

[37] SHI J,LU Y,ZHU R,et al.Experimental evaluation of fracture toughness of basalt macro fiber reinforced high performance lightweight aggregate concrete[J/OL].Construction and Building Materials,2024,411:134638.DOI:10.1016/j.conbuildmat.2023.134638.

[38] JIANGJIANG Y,GUODONG L,ZHENGYI R,et al.Mixed-mode I-II mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model[J/OL].Construction and Building Materials,2019,226:802-817.DOI:10.1016/j.conbuildmat.2019.07.231.

基本信息:

DOI:10.13928/j.cnki.wrahe.2025.08.018

中图分类号:TV431.3

引用信息:

[1]周成龙,于腾,张益盟,等.风机叶片绿色再生纤维钎增强水工混凝土力学性能研究[J].水利水电技术(中英文),2025,56(08):243-252.DOI:10.13928/j.cnki.wrahe.2025.08.018.

基金信息:

国家自然科学基金项目(52379127); 青海大学青年基金项目(42162024)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索