| 159 | 0 | 246 |
| 下载次数 | 被引频次 | 阅读次数 |
【目的】针对赣江尾闾河段因水动力分配不均导致的航运受阻、生态退化等衍生问题,拟通过定量分析南昌水利枢纽蓄水运行后的分流比优化方案,改善尾闾河段水动力分配不均问题。【方法】基于水动力数值模拟方法,构建了赣江尾闾河段二维水动力模型。模拟1983—2018年四种历史分流比工况下枢纽蓄水至外洲站水位15.5 m时的水动力响应特征,分析各分支河道流速变化规律;结合尾闾河段航运、生态流量要求、流速需求与各支过流能力,明确水量分配多目标约束条件;采用最大化最小流速法(Max-Min准则)进行分流比优化。【结果】研究表明:在枢纽蓄水后,在外洲流量小于等于2 000 m3/s,外洲与下游各支闸前的水位落差在0.5 m以内,且流量越低落差越小;优化后的分流比方案在外洲流量500 m3/s时,较四种历史分流比方案将各支流速下限提高了18.9%以上;1 000 m3/s时将流速下限提升了12.3%以上;2 000 m3/s时将各支流速下限提升了15.4%以上,控制在0.16~0.19 m/s避免了其他分流比方案产生的流速极端差异;4 000 m3/s时降低了流速的上限,使得各支流速在0.46 m/s以下,较其他分流比缓解了高流速对河床的冲刷。【结论】通过南昌枢纽的流量调控,可以有效改善各支水动力的不均匀特性,在各支流水动力满足基本的生态、航运需求的基础上提升了流速下限,控制了流速上限,解决了支流季节性断流问题,为多目标协同的水资源调度提供决策依据。
Abstract:[Objective]The issues of navigation obstruction and ecological degradation are caused by uneven hydrodynamic distribution in the river section of the Ganjiang River estuary. To address these, the optimization of flow diversion ratios after the impoundment operation of the Nanchang Hydraulic Hub is quantitatively analyzed, thereby improving the uneven hydrodynamic distribution in the river section of the estuary.[Methods]Based on hydrodynamic numerical simulation, a two-dimensional hydrodynamic model of the river section of Ganjiang River estuary was established. The hydrodynamic response characteristics were simulated under four operating conditions of historical flow diversion ratios from 1983 to 2018 when the hub impoundment raised the water level at Waizhou station to 15.5 m. The flow velocity variation patterns in each channel were analyzed. Combining navigation requirements, ecological flow demands, flow velocity requirements, and the flow capacity of each branch in the river section of the estuary, multi-objective constraints for water allocation were defined. The Max-Min criterion(maximization of minimum velocity method) was applied to optimize the flow diversion ratios.[Results]The result showed that after the hub impoundment, when the flow at Waizhou station was less than or equal to 2 000 m3/s, the water level difference between Waizhou and the downstream gates of each branch remained within 0.5 m, with smaller differences observed at lower flow rates. Under the optimized flow diversion ratio scheme, when the flow rate at Waizhou station was 500 m3/s, the minimum flow velocity in each branch increased by over 18.9% compared to the four historical flow diversion schemes. At 1 000 m3/s, the lower limit of flow velocity increased by more than 12.3%. At 2 000 m3/s, the lower limit of flow velocity in each branch increased by more than 15.4%, maintaining velocities within the range of 0.16 to 0.19 m/s and avoiding extreme flow velocity differences caused by other flow diversion ratio schemes. When the flow reached 4 000 m3/s, the upper limit of flow velocity reduced, keeping the velocities of all branches below 0.46 m/s, thereby alleviating the scouring of riverbeds caused by high flow velocity compared to other schemes.[Conclusion]Flow regulation via the Nanchang Hub effectively improves the uneven hydrodynamic characteristics among the branches. While meeting the basic ecological and navigation requirements of each branch, this regulation raises the lower limit of flow velocity, controls the upper limit, and addresses the issue of seasonal flow interruptions in the branches, thereby providing a decision-making basis for multi-objective coordinated water resource scheduling.
[1] 陈界仁,张婧,罗春,等.赣江下游东西河分流比变化分析[J].人民长江,2010,41(6):40-42.CHEN J R,ZHANG J,LUO C,et al.Analysis of diversion ratio for downstream of Ganjiang River[J].Yangtze River,2010,41(6):40-42.
[2] 阚光远,李纪人,喻海军,等.基于水热平衡的分布式水文模型研究与应用[J].中国水利水电科学研究院学报(中英文),2024,22(1):15-27.KAN Guangyuan,LI Jiren,YU Haijun,et al.Development and application of a distributed hydrological model based on water-heat balance[J].Journal of China Institute of Water Resources and Hydropower Research,2024,22(1):15-27.
[3] 陈界仁,刘涵心,吕婷婷.赣江尾闾河道枯水位变化与成因分析[J].水电能源科学,2016,34(10):28-31.CHEN J R,LIU H X,LU T T.Analysis of Low water level variation and cause for Ganjiang trail channel[J].Water Resources and Power,2016,34(10):28-31.
[4] 戴会超,毛劲乔,蒋定国.大型水利水电工程水沙生态环境调控研究进展[J].水利水电技术(中英文),2023,54(5):118-125.DAI H C,MAO J Q,JIANG D G.Research progress of water-sediment and ecological environment control of large hydropower projects[J].Water Resources and Hydropower Engineering,2023,54(5):118-125.
[5] 肖洋,宋成成,李开杰,等.赣江外洲站近50年水沙变化规律[J].水利水运工程学报,2011(4):126-130.XIAO Y,SONG C C,LI K J,et al.Variation of runoff and sediment load at Waizhou hydrologic station in Ganjiang River in the last 50 years[J].Hydro-Science and Engineering,2011(4):126-130.
[6] 郭程程,刘惠英.赣江中游禾水河水沙变化特征及影响因素分析[J].水利水电技术(中英文),2023,54(5):105-117.GUO C C,LIU H Y.Analysis of water and sediment variation characteristics and influencing factors in Heshui River along middle reaches of Ganjiang River[J].Water Resources and Hydropower Engineering,2023,54(5):105-117.
[7] 唐立模,肖洋,周洪都,等.赣江东西河分流比影响因素研究[J].水利水运工程学报,2011(4):64-68.TANG L M,XIAO Y,ZHOU H D,et al.Research on the effect factors of flow diversion ratio in Ganjiang River[J].Hydro-Science and Engineering,2011(4):64-68.
[8] 黄志文,许新发,唐立模,等.赣江入鄱阳湖尾闾东西河分流比变化规律分析[J].人民长江,2017,48(24):26-30.HUANG Z W,XU X F,TANG L M,et al.Analysis on variation of flow diversion ratio at tail-streams of Ganjiang River[J].Yangtze River,2017,48(24):26-30+51.
[9] 陈斌,邬年华,许新发,等.鄱阳湖水位变化对赣江尾闾河段分流比影响研究[J].人民长江,2018,49(8):8-12.CHEN B,WU N H,XU X F,et al.Test study on effects of water level fluctuation of Poyang Lake on diversion ratio of estuaries of Ganjiang River[J].Yangtze River,2018,49(8):8-12.
[10] 周苏芬,黄志文,唐立模,等.赣江尾闾多级分汊河道分流影响因素及联动响应分析[J].河海大学学报(自然科学版),2019,47(2):163-169.ZHOU S F,HUANG Z W,TANG L M,et al.Analysis on influencing factors of flow diversion ratio and linkage response of multistage bifurcations in the Ganjiang River[J].Journal of Hohai University (Natural Sciences),2019,47(2):163-169.
[11] 任长江,赵勇,龚家国,等.水质标识指数法在赣江尾闾段水质评价中的应用[J].中国水利水电科学研究院学报,2019,17(6):451-458.REN C J,ZHAO Y,GONG J G,et al.Application of a water quality identification index to evaluate the Ganjiang River estuary[J].Journal of China Institute of Water Resources and Hydropower Research,2019,17(6):451-458.
[12] 黄彬彬,严登华,李卿鹏.赣江尾闾河段水环境演变规律与驱动因子分析[J].人民长江,2019,50(S2):26-29.HUANG B B,YAN D H,LI Q P.Analysis of water environment evolution and driving factors in the tail section of Gan River[J].Yangtze River,2019,50(S2):26-29.
[13] SHI B S,CHENG X J,PAN J H,et al.Impact of water depth and flow velocity on organic matter removal and nitrogen cycling in floating constructed wetlands[J].Science of The Total Environment,2024,954:176731.
[14] HUANG F,OCHOA C G,GUO L D,et al.Investigating variation characteristics and driving forces of lake water level complexity in a complex river–lake system[J].Stochastic Environmental Research and Risk Assessment,2021,35(5):1003-1017.
[15] TANG H W,YUAN S Y,CAO H.Theory and practice of hydrodynamic reconstruction in plain river networks[J].Engineering,2023,24:202-211.
[16] 白慧文,甄晨曦,张鹏,等.基于EFDC模拟的闸坝联合调控水动力控藻研究[J].北京水务,2023(6):72-78.BAI H W,ZHEN C X,ZHANG P,et al.Research on gate-dam joint adjusting hydrodynamic conditions to control algea levels based on EFDC simulating[J].Beijing Water,2023(6):72-78.
[17] 徐存东,訾亚辉,黄嵩,等.基于MIKE 21的圩区河网水动力调控方法研究[J].水利水电技术(中英文),2023,54(7):161-170.XU C D,ZI Y H,HUANG S,et al.Research on the hydrodynamic regulation method of river network in polder area based on MIKE 21[J].Water Resources and Hydropower Engineering,2023,54(7):161-170.
[18] LI X Z,LEI G C,LI Y L,et al.Assessing hydrodynamic effects of ecological restoration scenarios for a tidal-dominated wetland in Liaodong Bay (China)[J].Science of the Total Environment,2021,752:142339.
[19] GAO C,WANG Z Y,JI X M,et al.Coupled improvements on hydrodynamics and water quality by flowing water in towns with lakes[J].Environmental Science and Pollution Research,2023,30(16):46813-46825.
[20] BAI T,KANG Y,LIU D,et al.Study on watershed ecological water replenishment coupling hydrodynamic and reservoir operation[J].Water Resources Management,2024,38(8):3071-3092.
[21] 李燕,金振奎,高白水,等.汊口滩沉积特征及沉积模式:以鄱阳湖赣江三角洲汊口滩为例[J].吉林大学学报(地球科学版),2021,51(6):1678-1688.LI Y,JIN Z K,GAO B S,et al.Sedimentary characteristics and model of branch mouth bar:A case study of branch mouth bar in Ganjiang Delta of Poyang Lake[J].Joumal of Jilin University (Earth Science Edition),2021,51(6):1678-1688.
[22] 许新发,黄志文,周苏芬,等.不同整治工程条件下赣江尾闾河网水流特性试验研究[J].长江科学院院报,2019,36(7):7-13.XU X F,HUANG Z W,ZHOU S F,et al.Effects of regulation projects on flow characteristics in tail channels of Ganjiang river[J].Journal of Yangtze River Scientific Research Institute,2019,36(7):7-13.
[23] 江西省水利科学院.赣抚尾闾综合整治工程之赣江下游尾闾综合整治工程可行性研究报告[R].南昌:江西省赣抚尾闾整治有限公司,2020.Jiangxi Academy of Water Science and Engineering.Feasibility study report on the comprehensive improvement project of the lower reaches of Ganjiang River (Ganfu Weilu Project)[R].Nanchang:Jiangxi Ganfu Weilu Improvement Co.,Ltd.,2020.
[24] 白玉川,李晓文,徐海珏,等.赣江尾闾河网地形变化对洪季水动力的影响[J].水力发电学报,2022,41(3):9-21.BAI Y C,LI X W,XU H J,et al.Effects of topographic changes in terminal river network of Ganjiang River on its hydrodynamics in flood season[J].Journal of Hydroelectric Engineering,2022,41(3):9-21.
[25] KANG M X,TIAN Y M,ZHANG H Y,et al.Effect of hydrodynamic conditions on the water quality in urban landscape water[J].Water Supply,2022,22(1):309-320.
[26] SUN Y Y,YIN X A,MAO X Q,et al.Suitable weir heights to improve the provision of environmental flows in urban rivers[J].Engineering,2021,7(2):187-194.
[27] SUN L F,WU L X,LIU X B,et al.Reducing the risk of benthic algae outbreaks by regulating the flow velocity in a simulated South-North water diversion open channel[J].International journal of environmental research and public health,2023,20(4):3564.
[28] 华祖林,董越洋,褚克坚.高度人工化城市河流生态水位和生态流量计算方法[J].水资源保护,2021,37(1):140-144.HUA Z L,DONG Y Y,CHU K J.Calculation method of ecological water level and discharge in highly artificial urban river[J].Water Resources Protection,2021,37(1):140-144.
[29] ZARGARI S,KHALILI A,WU Q Q,et al.Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model[J].IEEE Transactions on Vehicular Technology,2021,70(6):5848-5864.
[30] MATEOS-NúNEZ D,CORTéS J.Distributed saddle-point subgradient algorithms with Laplacian averaging[J].IEEE Transactions on Automatic Control,2016,62(6):2720-2735.
[31] 王青梅,吴明官.黑龙江省境内河流生态需水量计算方法研讨[J].黑龙江水利科技,2021,49(10):35-38.WANG Q M,WU M G.Discussion on calculation method of river ecological water demand in Heilongjiang Province[J].Heilongjiang Hydraulic Science and Technology,2021,49(10):35-38.
[32] 陈在妮,刘宏高,黄克威,等.大渡河干流已建水电站生态基流目标值复核分析[J].水生态学杂志,2024,45(1):50-57.CHEN Z N,LIU H G,HUANG K W,et al.Assessment of ecological base flow targets for cascaded hydropower plants on Dadu River[J].Journal of Hydroecology,2024,45(1):50-57.
[33] YAN H X,SEDIGHI M,JIVKOV A.Modelling the effects of water chemistry and flowrate on clay erosion[J].Engineering Geology,2021,294:106409.
[34] YANG S,YANG G S,LI B,et al.Water quality improves with increased spatially surface hydrological connectivity in plain river network areas[J].Journal of Environmental Management,2025,377:124703.
[35] WANG H,SHEN Z L,ZENG Y C,et al.Connection between anthropogenic water diversion and hydrodynamic condition in plain river network[J].Water,2021,13(24):3596.
[36] YANG H Y,WANG J Q,LI J H,et al.Modelling impacts of water diversion on water quality in an urban artificial lake[J].Environmental Pollution,2021,276:116694.
[37] 李晓文.赣江尾闾河网区非恒定流数值模拟研究[D].天津:天津大学建筑工程学院,2021.LI X W.Numerical simulation of unsteady flow in the terminal network of Ganjiang River[D].Tianjin:School of Civil Engineering,Tianjin University,2021.
[38] LU J G,FU Y M,LI X F,et al.Impact of the comprehensive remediation project on hydrological conditions in the lower reaches of the Ganjiang River[J].Water Science & Technology,2024,89(9):2577-2592.
[39] XIA Y,LIU Y,WANG Z C,et al.Damage Inflicted by Extreme Drought on Poyang Lake Delta Wetland and the Establishment of Countermeasures[J].Water,2024,16(16):2292.
[40] LV X L,YANG Z F,HU P,et al.Quantifying Environmental Flow in the Form of Pulse Flow for Fish Protection[J].Water,2023,15(15):2820.
基本信息:
DOI:10.13928/j.cnki.wrahe.2025.08.010
中图分类号:TV133
引用信息:
[1]张新铭,唐立模,万扬,等.赣江尾闾多级分汊河道水动力空间优化研究[J].水利水电技术(中英文),2025,56(08):131-148.DOI:10.13928/j.cnki.wrahe.2025.08.010.
基金信息:
国家重点研发计划项目“长江中下游平原河网区水动力优化再构与自然动能高效利用”(2022YFC3202603); 江西省水利厅科技项目“入湖多级分汊河道多目标流量动态调控技术研发与应用”(202325ZDKT04)