nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 11, v.56 140-152
土石坝防渗系统土工膜缺陷等效处理方法及严重缺陷致溃研究
基金项目(Foundation): 国家重点研发计划(2022YFC3005505); 2021年江苏省水利科技项目(2021068); 2022年江苏省水利科技项目(2022011)
邮箱(Email): 1486250366@qq.com;
DOI: 10.13928/j.cnki.wrahe.2025.11.011
摘要:

【目的】土工膜缺陷是导致大坝溃决的一个潜在影响因素,然而在有限元计算中如何对土工膜缺陷进行准确地模拟以及土工膜缺陷对溃坝的影响至今尚未有定论。【方法】为精确模拟土工膜缺陷,利用有限元计算软件对土工膜缺陷的不同模拟方式以及因土工膜缺陷诱发的溃坝效应进行了探究,分别开展了土工膜完好、土工膜真实缺陷和土工膜等效缺陷三种工况的渗流、稳定性态以及不同溃口深度下的溃坝效应的模拟计算工作。【结果】研究表明:土工膜缺陷的产生会显著抬升坝体浸润线,降低下游坡安全系数,10 cm的土工膜缺陷需将其渗透系数扩大108倍进行等效模拟。此外,较大面积的土工膜缺陷会诱发大坝溃口的形成,而不同的大坝溃口深度对下游的危害程度不同。溃口深度分别为9.0 m、15.0 m和21.5 m时,水流大概到达距离坝脚300 m、300 m和350 m处,此三种溃口深度下对应的溃坝水流压力最大值分别可达297.8 kPa、315.3 kPa和351.38 kPa,溃坝水流速度最大值分别可达21.3 m/s、20.7 m/s和20.3 m/s,溃口处流量分别为2.628×103 m3/s, 6.240×103 m3/s和12.040×103 m3/s。【结论】修订后的土工膜缺陷模拟等效渗透系数能更加准确地反映土工膜真实缺陷情况;此外,土工膜缺陷存在情况下的溃口深度对溃坝动力特征的研究结果,可加强施工过程中对土工膜保护的重视。

Abstract:

[Objective]Geomembrane defects represent a potential influencing factor causing dam breaches. However, there is no consensus yet on how to accurately simulate geomembrane defects in finite element calculations and on the influence of geomembrane defects on dam breach.[Methods]To refine simulation method for geomembrane defects, the finite element software was used to investigate different defect simulation approaches and the breach effects caused by them. Simulation calculations were carried out for three conditions: intact geomembrane, geomembrane with actual defects, and geomembrane with equivalent defects. The simulations analyzed seepage, stability states, and dam breach effects under different breach depths.[Results]The result showed that geomembrane defects significantly elevated the seepage line within dam bodies while reducing the safety factors of the downstream slope. A 10 cm geomembrane defect required the permeability coefficient to be increased by 108 times for equivalent simulation. In addition, large-area geomembrane defects could induce the formation of dam breaches, and different breach depths result ed in different degrees of downstream hazard. When the breach depth reached 9.0 m, 15.0 m, and 21.5 m, respectively, the flow reached about 300 m, 300 m, and 350 m from the dam toe, respectively. The maximum water pressure corresponding to these three breach depths reached 297.8 kPa, 315.3 kPa, and 351.38 kPa, respectively, while the maximum breach flow velocities reached 21.3 m/s, 20.7 m/s, and 20.3 m/s, respectively. The discharge rates at breach locations were 2.628×103 m3/s, 6.240×103 m3/s, and 12.040×103 m3/s, respectively.[Conclusion]The refined equivalent permeability coefficient for geomembrane defect simulations demonstrates enhanced accuracy in characterizing the actual condition of geomembrane defects. Furthermore, the findings on the influence of breach depth under conditions of geomembrane defects on dam breach dynamics can underscore the necessity of geomembrane protection during construction.

参考文献

[1] 甘磊,刘静楠,谭海劲,等.土工膜防渗低水头平原水库渗流场及膜体稳定性[J].水利水电科技进展,2022,42(4):45-50.GAN L,LIU J N,TAN H J,et al.Seepage field and membrane stability of a low-head plain reservoir with geomembrane anti-seepage measures[J].Advances in Science and Technology of Water Resources,2022,42(4):45-50.

[2] 曹雪山,施钦译,薛猛,等.土工膜防渗水库渗漏的数值模拟方法研究[J].岩土工程学报,2025,47(10):2145-2153.CAO X S,SHI Q Y,XUE M,et al.Study of numerical simulation methods for leakage in reservoirs with geomembrane seepage control[J].Chinese Journal of Geotechnical Engineering,2025,47(10):2145-2153.

[3] FOX P J,ROSS J D,SURA J M,et al.Geomembrane damage due to static and cyclic shearing over compacted gravelly sand[J].Geosynthetics International,2011,18(5):272-279.

[4] 李天义,孙德安,傅贤雷,等.考虑时变污染源与土工膜破损的污染物二维迁移特性[J].岩土工程学报,2024,46(11):2450-2456.LI T Y,SUN D A,FU X L,et al.Two-dimensional migration characteristics of contaminants considering time-dependent contaminant sources and GM defects[J].Chinese Journal of Geotechnical Engineering,2024,46(11):2450-2456.

[5] ROWE R K.Systems engineering:The design and operation of municipal solid waste landfills to minimize contamination of groundwater[J].Geosynthetics International,2011,18(6):391-404.

[6] PEGGS I D.Geomembrane liner action leakage rates:What is practical and what is not [J].Land and water,2009,53(4):47-50.

[7] FAN J,ROWE R K.Leakage through a circular geomembrane hole overlain and underlain by silty sand tailings[J].Geosynthetics International,2024,31(5):610-621.

[8] 岑威钧,耿利彦,和浩楠.库水降落时坝面缺陷土工膜的局部抗滑稳定性[J].应用基础与工程科学学报,2018,26(5):965-972.CEN W J,GENG L Y,HE H N.Local anti-sliding stability of geomembrane with defect on upstream dam surface under drawdown of reservoir[J].Journal of Basic Science and Engineering,2018,26(5):965-972.

[9] 张继勋,郁舒阳,胡南雄,等.考虑土工膜缺陷的面膜坝渗透稳定性分析[J].长江科学院院报,2018,35(11):96-100.ZHANG J X,YU S Y,HU N X,et al.Seepage and stability of geomembrane dam with geomembrane defects under rapid drawdown of reservoir water level[J].Journal of Yangtze River Scientific Research Institute,2018,35(11):96-100.

[10] 沈振中,江沆,沈长松.复合土工膜缺陷渗漏试验的饱和-非饱和渗流有限元模拟[J].水利学报,2009,40(9):1091-1095.SHEN Z Z,JIANG H,SHEN C S.Numerical simulation of composite geomembrane defect leakage experiment based on saturated-unsaturated seepage theory[J].Journal of Hydraulic Engineering,2009,40(9):1091-1095.

[11] 孙丹,沈振中,崔健健.土工膜缺陷引起的土工膜防渗砂砾石坝渗漏数值模拟[J].水电能源科学,2013,31(4):69-73.SUN D,SHEN Z Z,CUI J J.Seepage numerical simulation of geomembrane gravel dam caused by geomembrane defect[J].Water Resources and Power,2013,31(4):69-73.

[12] 刘欣怡,李卓,蒋景东,等.某土工膜防渗土石坝渗漏险情成因分析[J].水电能源科学,2024,42(2):134-137.LIU X Y,LI Z,JIANG J D,et al.Causes analysis of leakage in a geomembrane anti-seepage earth-rockfill dam[J].Water Resources and Power,2024,42(2):134-137.

[13] 岑威钧,都旭煌,耿利彦,等.随机多缺陷条件下土工膜防渗土石坝渗漏特性[J].水利水电科技进展,2018,38(3):60-65.CEN W J,DU X H,GENG L Y,et al.Seepage properties of geomembrane faced earth-rock dams under random multiple defects[J].Advances in Science and Technology of Water Resources,2018,38(3):60-65.

[14] 陈昌盛.土工膜缺陷对坝坡渗流特性及稳定的影响[J].四川水利,2022,43(3):12-17.CHEN C S.Influence of geomembrane defects on seepage characteristics and stability of dam slope[J].Sichuan Water Resources,2022,43(3):12-17.

[15] 黄杰,王俊杰,黄诗渊,等.土工膜缺陷对土工膜心墙堆石坝工作性能的影响分析[J].水电能源科学,2024,42(8):142-146.HUANG J,WANG J J,HUANG S Y,et al.Study on the working characteristics of core wall rockfill dam considering geomembrane permeation[J].Water Resources and Power,2024,42(8):142-146.

[16] 陈贺珏.土工膜防渗土石坝渗流特性分析[J].人民长江,2016,47(S1):146-149.

[17] 廖志彬,胡婉婷,安彦平,等.土工膜防渗水库的缺陷渗漏量估算方法研究[J].水资源与水工程学报,2024,35(5):130-136.LIAO Z B,HU W T,AN Y P,et al.Estimation method of defective leakage in geomembrane impermeable reservoirs[J].Journal of Water Resources and Water Engineering,2024,35(5):130-136.

[18] ROWE R K,FAN J Y.A general solution for leakage through geomembrane defects overlain by saturated tailings and underlain by highly permeable subgrade[J].Geotextiles and Geomembranes,2022,50(4):694-707.

[19] FAN J Y,ROWE R K.Effect of subgrade on leakage through a defective geomembrane seam below saturated tailings[J].Geotextiles and Geomembranes,2023,51(2):360-369.

[20] 岑威钧,王辉,李邓军.土工膜缺陷对土石坝渗流特性及坝坡稳定的影响[J].武汉大学学报(工学版),2018,51(7):589-595.CEN Weijun,WANG Hui,LI dengjun.Influence of geomembrane defects in earth rock dam with differentgeomembrane layouts on seepage property and dam safety[J].Engineering Journal of Wuhan University,2018,51(7):589-595.

[21] 罗来辉,张蕴倩,黄一国.基于Autobank软件的大坝渗流及稳定分析[J].水利水电技术(中英文),2024,55(S2):192-195.LUO L H,ZHANG Y Q,HUANG Y G.Stability and analysis of seepage in a reservoir dam based on autobank software[J].Water Resources and Hydropower Engineering,2024,55(S2):192-195.

[22] 欧斌,张才溢,傅蜀燕,等.基于CNN-BiLSTM的特高拱坝变形预测模型[J].排灌机械工程学报,2024,42(10):1031-1035.OU B,ZHANG C Y,FU S Y,et al.CNN-BiLSTM-based deformation prediction model for extra-high arch dams[J].Journal of Drainage and Irrigation Machinery Engineering,2024,42(10):1031-1035.

[23] 周昔东,何小泷,袁浩,等.溃坝洪水演进及溃坝水流对下游坝体冲击研究[J].中国水利水电科学研究院学报(中英文),2023,21(1):74-82.ZHOU X D,HE X L,YUAN H,et al.Investigation of the evolution of dam-break flood and the impact of dam-break flow on the downstream dam[J].Journal of China Institute of Water Resources and Hydropower Research,2023,21(1):74-82.

[24] 马洪玉,李敬军,朱凯斌,等.基于CEL方法的带结构物溃坝流数值模拟[J].中国水利水电科学研究院学报(中英文),2024,22(2):159-168.MA H Y,LI J J,ZHU K B,et al.Numerical simulation of dam-break flow with obstacle based on CEL[J].Journal of China Institute of Water Resources and Hydropower Research,2024,22(2):159-168.

[25] 李楠,杨兴国,周家文,等.不同粒组含量下堰塞坝溃决过程的试验研究[J].水利水电技术(中英文),2024,55(5):29-37.LI N,YANG X G,ZHOU J W,et al.Experimental study on the breaching process of landslide dams with different particle contents[J].Water Resources and Hydropower Engineering,2024,55(5):29-37.

[26] 水利电力部西北勘测设计院.碾压式土石坝设计规范SDJ218—84[M].北京:水利电力出版社,1985.Northwest Investigation,Design and Research Institute of the Ministry of Water Resources and Electric Power.Design Code for Rolled Earth-rock Fill Dams:SDJ 218—84[M].Water Resources and Electric Power Press,1985.

[27] 张建国.土石坝溃决机理研究及溃口洪水的数值模拟[D].武汉:华中科技大学,2010.ZHANG J G.The Mechanism Study of Dam-Break and Simulation of Flood Wave[D].Wuhan:Huazhong University of Science and Technology,2010.

[28] 岑威钧,和浩楠,温朗昇.防渗土工膜的缺陷特性与缺陷渗漏研究进展[J].河海大学学报(自然科学版),2017,45(1):36-44.CEN W J,HE H N,WEN L S.Research progress on defect property and defect-induced leakage of impermeable geomembrane[J].Journal of Hohai University (Natural Sciences),2017,45(1):36-44.

[29] 韩章怡,崔红英,高维鸿,等.库底土工膜随机缺陷和老化对水库渗漏影响分析[J/OL].中国农村水利水电,2025.(2025-04-14).https://kns.cnki.net/kcms/detail/42.1419.tv.20250414.1441.066.html.HAN Z Y,CUI H Y,GAO W H,et al.Analysis of the influence of random geomembrane defects and aging on reservoir leakage[J/OL].China Rural Water and Hydropower,2025.(2025-04-14).https://kns.cnki.net/kcms/detail/42.1419.tv.20250414.1441.066.html.

[30] 陈生水.土石坝溃决机理与溃坝过程模拟[M].北京:中国水利水电出版社,2012.CHEN S S.Numerical models for earth-rock dam breaching and their applications[M].Beijing:China Water & Power Press,2012.

基本信息:

DOI:10.13928/j.cnki.wrahe.2025.11.011

中图分类号:TV641;TV49;TV223.4

引用信息:

[1]杨钟宇,龚赐缘,姓海涛,等.土石坝防渗系统土工膜缺陷等效处理方法及严重缺陷致溃研究[J].水利水电技术(中英文),2025,56(11):140-152.DOI:10.13928/j.cnki.wrahe.2025.11.011.

基金信息:

国家重点研发计划(2022YFC3005505); 2021年江苏省水利科技项目(2021068); 2022年江苏省水利科技项目(2022011)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索