nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 11, v.56 153-167
侧式进水口吸气漩涡的控制机制及消涡规律研究
基金项目(Foundation): 中央级公益性科研院所基本科研专项(Y125003); 国家重点研发计划(2022YFC3202605)
邮箱(Email): chhan@nhri.cn;
DOI: 10.13928/j.cnki.wrahe.2025.11.012
摘要:

【目的】在水利工程中,漩涡问题不容忽视,会降低枢纽的泄流能力、恶化水流流态、增大水头损失等,危及建筑物的运行安全。为降低侧式进水口漩涡的潜在风险,提出合理的消涡方案,【方法】以侧式进水口为研究主体,以吸气漩涡为对象,通过物理模型试验研究了单层、双层消涡梁的消涡特性和消涡规律。【结果】结果显示:消涡梁主要是通过减小漩涡区的切向流速V_θ和径向流速Vr,从而减弱进水口前水流表面环量,实现消除进水口吸气漩涡的目的。对于单层消涡梁,减小消涡梁的相对间距∑Δl/l或增大消涡梁安装高度he/D可提高消涡梁的消涡效果,较未布置消涡梁方案(∑Δl/l=1.000),∑Δl/l=0.357下漩涡的强度减小了约80.0%;较消涡梁安装在进水口顶部(he/D=0.00)方案,当消涡梁的安装高度提升为he/D=0.40,漩涡强度减小了约78.8%。对于双层消涡梁,当双层消涡梁采用横、纵梁布置时,将纵梁间距由∑ΔL/Lz=0.710减小至∑ΔL/Lz=0.310时,漩涡强度可减小约70.0%;当双层消涡梁均采用消涡横梁时,较V型布置、阶梯立式布置,采用交叉布置时消涡效果最好。【结论】消涡梁的间距、安装高度、布置方式等对消涡特性影响显著,通过该研究对消涡梁的消涡规律有了进一步认知,可为今后侧式进水口漩涡问题的解决提供参考。

Abstract:

[Objective]Vortex issues in hydraulic engineering cannot be ignored, as they reduce the discharge capacity of the hub, deteriorate the flow pattern, increase head loss, and pose risks to the safe operation of structures. To mitigate the potential risks of vortices in side intake structures and to propose a reasonable vortex suppression scheme, [Methods]vortex suppression characteristics and mechanisms of single-layer and double-layer vortex suppression beams were investigated through physical model experiments, focusing on side intake structures and air-entraining vortices.[Results]The result showed that the vortex suppression beams mainly reduce the tangential velocity V_θ and radial velocity Vr in the vortex region. This reduction weakens the circulation on the water surface in front of the intake, ultimately leading to the elimination of air-entraining vortices. For single-layer vortex suppression beams, reducing the relative spacing∑Δ l/l or increasing the installation height he/D enhances the vortex suppression effect. Compared to the scheme without vortex suppression beams(∑Δ l/l=1.000), when ∑Δ l/l=0.357, the intensity of the lower vortex is reduced by about 80.0%. Compared to the scheme where the beam is installed at the top of the intake(he/D=0.00), when he/D=0.40, the vortex intensity is reduced by about 78.8%. For double-layer vortex suppression beams, when using both transverse and longitudinal beams and ∑Δ L/Lz being reduced from 0.710 to 0.310, the vortex intensity is reduced by about 70.0%. The cross-arranged configuration achieves the best vortex dissipation effect compared to the V-shaped and stepped vertical configurations.[Conclusion]The spacing, installation height, and arrangement of vortex suppression beams significantly impact their suppression characteristics. A deeper understanding of vortex suppression laws is gained, providing a reference for future solutions to vortex problems in side intake structures.

参考文献

[1] GUO M,TANG X L,WANG F J,et al.Investigation on free-surface vortices within a closed pump intake under different pressure conditions using stereo PIV[J].Journal of Nuclear Science and Technology,2021,58(2):241-251.

[2] AZARPIRA M,SARKARDEH H,TAVAKKOL S,et al.Vortices in dam reservoir:A case study of Karun III dam[J].Sadhana,2014,39(5):1201-1209.

[3] DOMFEH M K,GYAMFI S,AMO-BOATENG M,et al.Free surface vortices at hydropower intakes:A state-of-the-art review[J].Scientific African,2020,8:e00355.

[4] NADERI V,FARSADIZADEH D,LIN C,et al.A 3D study of an air-core vortex using HSPIV and flow visualization[J].Arabian Journal for Science and Engineering,2019,44(10):8573-8584.

[5] SUERICH-GULICK F,GASKIN S J,VILLENEUVE M,et al.Characteristics of free surface vortices at low-head hydropower intakes[J].Journal of Hydraulic Engineering,2014,140(3):291-299.

[6] 田甜,郭悦,徐国宾.进水口前漩涡研究现状和发展趋势[J].水资源与水工程学报,2021,32(5):151-157.TIAN T,GUO Y,XU G B.Research status and future directions of intake vortexes[J].Journal of Water Resources and Water Engineering,2021,32(5):151-157.

[7] M?LLER G,DETERT M,BOES R M.Vortex-induced air entrainment rates at intakes[J].Journal of Hydraulic Engineering,2015,141(11):04015026.

[8] 何学民,汝树勋.水工建筑物进水口自由表面漏斗旋涡消除措施的试验研究[J].四川水力发电,1992,11(3):38-43.HE X M,RU S X.Experiment study on measures for eliminating free surface cone vortex at intake of hydraulic structures[J].Sichuan Water Power,1992,11(3):38-43.

[9] 邹敬民,高树华,于艳丽,等.进水口防涡措施研究[J].水动力学研究与进展(A辑),2000,15(4):463-466.ZOU J M,GAO S H,YU Y L,et al.The research of vortex precaution in intake[J].Journal of Hydrodynamics,2000,15(4):463-466.

[10] 马钧.除险加固工程泄洪洞进口消涡梁消涡效果研究[J].陕西水利,2021(3):19-20.MA J.Study on effect of vortex elimination beam at the entrance of spillway tunnel in reinforcement project[J].Shaanxi Water Resources,2021(3):19-20.

[11] 王威.抽水蓄能电站侧式进口漩涡试验与消涡措施研究[J].东北水利水电,2022,40(4):46-47.WANG W.Study on vortex test and vortex elimination measures at side inlet of pumped storage power station[J].Water Resources & Hydropower of Northeast China,2022,40(4):46-47.

[12] 王勤香,朱政德,代凌辉.某调蓄水库工程泄洪底孔消涡试验研究[J].水电能源科学,2017,35(6):74-76.WANG Q X,ZHU Z D,DAI L H.Experimental study on vortex suppression measures of regulating reservoir bottom outlets[J].Water Resources and Power,2017,35(6):74-76.

[13] 楚志腾,贾栖.消涡梁对立轴旋涡三维水流结构的影响研究[J].山西建筑,2021,47(3):174-176.CHU Z T,JIA Q.Effects of eddy-eliminating beam on water flow structure at Bottom water inlet[J].Shanxi Architecture,2021,47(3):174-176.

[14] 郭水晶.古贤水利枢纽导流洞进水口立轴漩涡水力特性及消涡措施研究[D].天津:天津大学,2022.GUO S J.Study on Hydraulic Characteristics of Vertical Shaft Vortex and Measures for Eliminating Vortex in Diversion Tunnel of Guxian Hydro Project[D].Tianjin:Tianjin University,2022.

[15] 严根华,陈发展,胡去劣.进水口旋涡及消涡栅试验研究[C]//IAHR.第三届全国水力学与水利信息学大会.南京:国际水利工程与研究协会,2007.YAN Genhua,CHEN Fazhan,HU Qulue.Experimental study on inlet vortex and vortex baffle [C]//IAHR.The 3rd National Congress of Hydraulics and Hydraulic Informatics.Nanjing:IAHR,2007.

[16] GOGUS M,ALTAN-SAKARYA A B,KOKEN M.Experimental investigation of the anti-vortex devices of beyhan 1 dam and hydroelectric power plant water intake structure[J].Procedia Engineering,2016,161:881-886.

[17] NADERI V,FARSADIZADEH D,HOSSEINZADEH DALIR A,et al.Effect of using vertical plates on vertical intake on discharge coefficient[J].Arabian Journal for Science and Engineering,2014,39(12):8627-8633.

[18] 岳振,陈海坤,田忠.一种消除闸前立轴漩涡的横向消涡栅的水力特性研究[J].水电能源科学,2023,41(10):200-203.YUE Z,CHEN H K,TIAN Z.Study on hydraulic characteristics of a horizontal eddy-elimination barries eliminating vertical vortex in front of sluice gate[J].Water Resources and Power,2023,41(10):200-203.

[19] 刘洁洁.闸前漩涡消涡试验及数值模拟研究[D].大连:大连理工大学,2018.LIU J J.Experimental and Numerical Simulation Study on Eddy-Elimination in Front of Sluice[D].Dalian:Dalian University of Technology,2018.

[20] TAGHVAEI S M.Anti-vortex structures at hydropower dams[J].International Journal of Physical Sciences,2012,7:5069-5077.

[21] AMIRI S M,ZARRATI A R,ROSHAN R,et al.Surface vortex prevention at power intakes by horizontal plates[J].Proceedings of the Institution of Civil Engineers — Water Management,2011,164(4):193-200.

[22] TRIVELLATO F.Anti-vortex devices:Laser measurements of the flow and functioning[J].Optics and Lasers in Engineering,2010,48(5):589-599.

[23] KHADEM RABE B,GHOREISHI NAJAFABADI S H,SARKARDEH H.Numerical simulation of anti-vortex devices at water intakes[J].Proceedings of the Institution of Civil Engineers — Water Management,2018,171(1):18-29.

[24] KABIRI-SAMANI A R,BORGHEI S M.Effects of antivortex plates on air entrainment by free vortex[J].Scientia Iranica,2013,20(2):251-258.

[25] MONSHIZADEH M,TAHERSHAMSI A,RAHIMZADEH H,et al.Vortex dissipation using a hydraulic-based anti-vortex device at intakes[J].International Journal of Civil Engineering,2018,16(9):1137-1144.

[26] MONSHIZADEH M,TAHERSHAMSI A,RAHIMZADEH H,et al.Comparison between hydraulic and structural based anti-vortex methods at intakes[J].The European Physical Journal Plus,2017,132(8):329.

[27] TAHERSHAMSI A,RAHIMZADEH H,MONSHIZADEH M,et al.A new approach on anti-vortex devices at water intakes including a submerged water jet[J].The European Physical Journal Plus,2018,133(4):143.

[28] ANWAR H O,WELLER J A,AMPHLETT M B.Similarity of free-vortex At horizontal intake[J].Journal of Hydraulic Research,1978,16(2):95-105.

[29] FOND B,XIAO C N,T’JOEN C,et al.Investigation of a highly underexpanded jet with real gas effects confined in a channel:Flow field measurements[J].Experiments in Fluids,2018,59(10):160.

[30] GUO Z W,CHEN F,WU P F,et al.Three-dimensional simulation of air entrainment in a sump pump[J].Journal of Hydraulic Engineering,2017,143(9):04017024.

[31] KHOSHKALAM N,NAJAFI A F,RAHIMIAN M H,et al.Numerical study on air-core vortex:Analysis of generation mechanism[J].Archive of Applied Mechanics,2020,90(1):1-16.

[32] TAHERSHAMSI A,RAHIMZADEH H,MONSHIZADEH M,et al.An experimental study on free surface vortex dynamics[J].Meccanica,2018,53(13):3269-3277.

[33] ZI D,XUAN A Q,WANG F J,et al.Numerical study of mechanisms of air-core vortex evolution in an intake flow[J].International Journal of Heat and Fluid Flow,2020,81:108517.

基本信息:

DOI:10.13928/j.cnki.wrahe.2025.11.012

中图分类号:TV135

引用信息:

[1]余凯文,韩昌海,韩康,等.侧式进水口吸气漩涡的控制机制及消涡规律研究[J].水利水电技术(中英文),2025,56(11):153-167.DOI:10.13928/j.cnki.wrahe.2025.11.012.

基金信息:

中央级公益性科研院所基本科研专项(Y125003); 国家重点研发计划(2022YFC3202605)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索