nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.56 1-18
1961—2020年珠江流域极端气温和降水复合事件的时空演变特征分析
基金项目(Foundation): 国家自然科学基金项目(42005126)
邮箱(Email): wenss@ahnu.edu.cn;
DOI: 10.13928/j.cnki.wrahe.2025.08.001
摘要:

【目的】珠江流域是中国重要的经济与人口密集区,然而经常受到极端气温和极端降水事件的影响。仅分析单一变量可能低估这些极端事件对区域的实际影响。因此,研究极端气温和极端降水的复合灾害事件的变化趋势和特征,对准确评估其潜在灾害影响具有重要的科学意义。【方法】基于1961—2020年的气象观测数据,采用相对阈值法和标准化降水蒸散指数(SPEI),识别出热干、热湿、冷干和冷湿四类复合事件,通过趋势分析和空间分布研究,揭示这些复合事件的时空分布特征及其变化趋势。【结果】结果显示:1961—2020年期间,气温与SPEI呈显著负相关,尤其在夏季和冬季,西部和南部地区的相关性尤为突出。珠江流域热湿事件显著增加,冷干事件显著减少,尤其在21世纪初期变化最为明显。热湿事件主要集中在流域东南部及南部沿海地区,热干事件多发于西部和南部,冷湿事件在西北部频繁发生,冷干事件则在东北部较为常见。强度方面,热干事件主要表现为强等级和中等级,其天数远超热湿、冷湿和冷干事件。1991—2020年,热湿和热干事件的发生频数分别增加了24%和99%,而冷湿和冷干事件的频数则分别减少了9%和41%。在区域分布上,热干事件在平原和丘陵地带,尤其是海南岛及南海诸岛区域最为频繁;而冷湿事件在中山和高山地带更为显著。这些变化揭示了区域气候的显著转变。【结论】结果表明:珠江流域内热干和热湿事件的频数显著增加,尤其在南部和西部地区更为明显,反映出这些区域在未来气候变暖背景下面临高风险;相对而言,冷干和冷湿事件的减少趋势表明,区域气候正向暖湿化转变。通过深入分析复合极端事件的时空变化特征及其演变规律,研究成果为珠江流域的气候预估、复合灾害事件应对策略的制定以及防灾减灾能力提升提供了重要的科学依据和参考。

Abstract:

[Objective]The Pearl River Basin is an important economic and densely populated area in China, frequently affected by extreme temperature and precipitation events. Studying the spatiotemporal variations of compound extreme events is vital for regional climate adaptation management.[Methods]Based on meteorological observation data from 1961 to 2020, this study employs the relative threshold method and the Standardized Precipitation Evapotranspiration Index(SPEI) to identify four types of compound extreme events: hot-dry, hot-wet, cold-dry, and cold-wet. Trend analysis and spatial distribution studies were conducted to reveal the spatiotemporal distribution characteristics and trends of these compound events.[Results]The result indicate a significant negative correlation between temperature and SPEI in the Pearl River Basin from 1961 to 2020, particularly prominent in the western and southern regions during summer and winter. Notably, there has been a substantial increase in hot-wet events and a significant decrease in cold-dry events, with the most pronounced changes occurring in the early 21st century. Hot-wet events were mainly concentrated in the southeastern and southern coastal areas of the basin, and hot-dry events frequently occur in the western and southern regions. Cold-wet events are common in the northwest, and cold-dry events are most frequent in the northeast. In terms of intensity, hot-dry events are mainly classified as strong or medium, with their duration far exceeding that of hot-wet, cold-wet, and cold-dry events. From 1991 to 2020, the occurrence frequencies of hot-wet and hot-dry events increased by 24% and 99%, respectively, while those of cold-wet and cold-dry events decreased by 9% and 41%. Regionally, hot-dry events are most frequent in plains and hilly areas, particularly in Hainan Island and the South China Sea Islands, whereas cold-wet events are more prominent in mid-altitude and high-altitude areas. The changes reveal a significant transformation in the regional climate.[Conclusion]The findings indicate a notable increase in the frequency of hot-dry and hot-wet events in the Pearl River Basin, especially in the southern and western regions, reflecting high-risk exposure in these areas under future climate warming. Conversely, the decreasing trend of cold-dry and cold-wet events suggests a shift toward a warmer and wetter climate. Through an in-depth analysis of the spatiotemporal characteristics and evolution of compound extreme events, this study provides important scientific evidence and references for climate prediction, response strategies to compound disaster events, and enhancing disaster prevention and mitigation capabilities in the Pearl River Basin.

参考文献

[1] 任福民,高辉,刘绿柳,等.极端天气气候事件监测与预测研究进展及其应用综述[J].气象,2014,40(7):860-874.REN Fumin,GAO Hui,LIU Luliu,et al.Research progress and application overview of monitoring and prediction of extreme weather and climate events[J].Meteorological Monthly,2014,40(7):860-874.

[2] 蒋帅,张黎,景元书,等.1981—2015年中国区域极端气候事件的时空分布特征[J].水土保持研究,2023,30(6):295-306.JIANG Shuai,ZHANG Li,JING Yuanshu,et al.Spatiotemporal distribution characteristics of extreme climate events in China from 1981 to 2015[J].Research of Soil and Water Conservation,2023,30(6):295-306.

[3] 余荣,翟盘茂.关于复合型极端事件的新认识和启示[J].大气科学学报,2021,44(5):645-649.YU Rong,ZHAI Panmao.New insights and implications of compound extreme events[J].Transactions of Atmospheric Sciences,2021,44(5):645-649.

[4] IPCC.Climate Change 2021:The Physical Science Basis [M].Cambridge:Cambridge University Press,2021.

[5] MYHRE G,ALTERSKJ?R K,STJERN C W,et al.Frequency of extreme precipitation increases extensively with event rareness under global warming[J].Scientific Reports,2019,9(1):16063.

[6] 郝增超,陈阳.地球系统视角下的多圈层复合极端事件研究进展与展望[J].中国科学:地球科学,2024,54(2):360-393.HAO Zengchao,CHEN Yang.Research progress and prospects of multi-sphere compound extreme events from the perspective of earth system science[J].Science China:Earth Sciences,2024,54(2):360-393.

[7] HAQIQI I,GROGAN D S,HERTEL T W.Quantifying the impacts of compound extremes on agriculture[J].Hydrology and Earth System Sciences,2021,25(2):551-564.

[8] DAS J,MANIKANTA V,UMAMAHESH N V.Population exposure to compound extreme events in India under different emission and population scenarios[J].The Science of the total environment,2021,806:150424.

[9] LIU Z Y,CHENG L Y,HAO Z C,et al.A framework for exploring joint effects of conditional factors on compound floods[J].Water Resources Research,2018,54(4):2681-2696.

[10] PENG T T,ZHAO L,ZHANG L,et al.Changes in temperature-precipitation compound extreme events in China during the past 119 years[J].Earth and Space Science,2023,10(8):e2022EA 002777.

[11] WU X,HAO Z C,HAO F,et al.Spatial and temporal variations of compound droughts and hot extremes in China[J].Atmosphere,2019,10(2):95.

[12] 秦国帅.极端水文事件对水安全保障的影响及应对措施[J].水利发展研究,2022,22(9):10-13.QIN Guoshuai.Impact of extreme hydrological events on water security and countermeasures[J].Water Resources Development Research,2022,22(9):10-13.

[13] WU X Y,HAO Z C,HAO F H,et al.Variations of compound precipitation and temperature extremes in China during 1961—2014[J].Science of The Total Environment,2019,663:731-737.

[14] 郑芳,李芳然,甘义群,等.极端气候事件对洞庭湖水文连通性变化的影响[J].南水北调与水利科技(中英文),2024,22(1):67-79.ZHENG F,LI F R,GAN Y Q,et al.The impact of extreme climatic events on hydrological connectivity of Dongting Lake[J].South-toNorth Water Transfers and Water Science & Technology,2024,22(1):67-79.

[15] YU R,ZHAI P M.Changes in compound drought and hot extreme events in summer over populated eastern China[J].Weather and Climate Extremes,2020,30:100295.

[16] YANG C,ZHEN L,YAN S,et al.Detectable increases in sequential flood:Heatwave events across China during 1961—2018[J].Geophysical Research Letters,2021,48(6):e2021GL092549.

[17] LIAO Z,CHEN Y,LI W,et al.Growing threats from unprecedented sequential flood-hot extremes across China[J].Geophysical Research Letters,2021,48(18):e2021GL094505.

[18] 徐飞,张汶海,赵玲玲,等.1960—2018年珠江流域极端气温时空变化特征[J].山地学报,2022,40(3):343-354.XU Fei,ZHANG Wenhai,ZHAO Lingling,et al.Spatiotemporal variations of extreme temperature in the Pearl River Basin from 1960 to 2018[J].Journal of Mountain Science,2022,40(3):343-354.

[19] 吴志勇,白博宇,何海,等.珠江流域1981—2020年水文干旱时空特征分析[J].河海大学学报(自然科学版),2023,51(1):1-9.WU Zhiyong,BAI Boyu,HE Hai,et al.Spatiotemporal characteristics of hydrological drought in the Pearl River Basin from 1981 to 2020[J].Journal of Hohai University (Natural Sciences),2023,51(1):1-9.

[20] ZHANG H,WU C,HU X B.Recent intensification of short-term concurrent hot and dry extremes over the Pearl River basin,China[J].International Journal of Climatology,2019,39(13):4924-4937.

[21] QI Z X,SUN L,CAI Y P,et al.Spatial-temporal dynamics of population exposure to compound extreme heat-precipitation events under multiple scenarios for Pearl River Basin,China[J].Climate Services,2024,34:100477.

[22] WU X Y,HAO Z C,HAO F H,et al.Variations of compound precipitation and temperature extremes in China during 1961—2014[J].Science of The Total Environment,2019,663:731-737.

[23] WU X Y,HAO Z C,ZHANG X,et al.Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach[J].Journal of Hydrology,2020,583:124580.

[24] HU Y J,WANG W,WANG P,et al.Spatial-temporal variations and drivers of the compound dry-hot event in China[J].Atmospheric Research,2024,299:107160.

[25] 姜雨彤,侯爱中,郝增超,等.长江流域2022年高温干旱事件演变及历史对比[J].水力发电学报,2023,42(8) :1-9.JIANG Yutong,HOU Aizhong,HAO Zengchao,et al.Evolution and historical comparison of the high temperature and drought event in the Yangtze River Basin in 2022 [J].Journal of Hydroelectric Engineering,2023,42(8):1-9.

[26] 张灵,吴恩捷,潘浩桦,等.1960—2020年珠江流域跨季节尺度干旱时空变化[J].农业工程学报,2024,40(13):77-84.ZHANG Ling,WU Enjie,PAN Haohua,et al.Temporal and spatial variations of drought across seasons in the Pearl River basin from 1960 to 2020 [J].Transactions of the Chinese Society of Agricultural Engineering,2024,40(13):77-84.

[27] 吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1102-1111.WU Jia,GAO Xuejie.A set of gridded daily observational data over China and its comparison with other datasets[J].Chinese Journal of Geophysics,2013,56(4):1102-1111.

[28] 梁曼琳,刘丙军,李旦.珠江流域旱涝急转事件识别指数优选研究[J].自然灾害学报,2022,31(4):57-64.LIANG Manlin,LIU Bingjun,LI Dan.Study on optimal selection of identification indices for abrupt change between drought and flood in the Pearl River Basin[J].Journal of Natural Disasters,2022,31(4):57-64.

[29] 周晶,孙燕,齐雅静.中国春季复合极端低温多雨事件的年代际变化及成因分析[J].气候变化研究进展,2024,20(1):1-9.ZHOU Jing,SUN Yan,QI Yajing.Interdecadal variations and causes of compound extreme cold and rainy events in spring over China[J].Advances in Climate Change Research,2024,20(1):1-9.

[30] VINCENTE-SERRANO S M,BEGUERíA S,LOPEZ-MORENO J I,et al.A multiscalar drought index sensitive to global warming:The standardized precipitation evapotranspiration index[J].Journal of Climate,2010,23 (7):1696-1719.

[31] EMANUELE B,GIUSEPPE Z,FLAVIO L,et al.Precipitation trends determine future occurrences of compound hot-dry events[J].Nature Climate Change,2022,12(4):350-355.

[32] 褚彦琪,杨的山,王星明,等.基于SPEI指数分析1980—2019年漓江流域干旱特征[J].节水灌溉,2024(1):77-86.ZHU Yanqi,YANG Deshan,WANG Xingming,et al.Analysis of drought characteristics in the Lijiang River Basin from 1980 to 2019 based on SPEI index[J].Water Saving Irrigation,2024(1):77-86.

[33] 郝增超,张璇,郝芳华,等.2022年夏季长江流域复合高温干旱事件的影响及应对[J].水资源保护,2023,39(6):46-52.HAO Zengchao,ZHANG Xuan,HAO Fanghua,et al.Impacts and countermeasures of the compound heatwave and drought event in the Yangtze River Basin during summer 2022[J].Water Resources Protection,2023,39(6):46-52.

[34] 刘珂,姜大膀.基于两种潜在蒸散发算法的SPEI对中国干湿变化的分析[J].大气科学,2015,39(1):23-36.LIU Ke,JIANG Dabang.Analysis of dry and wet changes in China based on SPEI with two potential evapotranspiration algorithms[J].Chinese Journal of Atmospheric Sciences,2015,39(1):23-36.

[35] 方建,陶凯,牟莎,等.复合极端事件及其危险性评估研究进展[J].地理科学进展,2023,42(3):587-601.FANG Jian,TAO Kai,MU Sha,et al.Research progress on compound extreme events and their risk assessment[J].Progress in Geography,2023,42(3):587-601.

[36] RIDDER N N,PITMAN A J,UKKOLA A M.High impact compound events in Australia[J].Weather and Climate Extremes,2022,36:100457.

[37] 张书惠,华维,陈活泼.1961—2020年中国复合湿热的变化特征[J].大气科学学报,2024,47(2):300-312.ZHANG Shuhui,HUA Wei,CHEN Huopo.Characteristics of compound hot and humid events in China from 1961 to 2020[J].Transactions of Atmospheric Sciences,2024,47(2):300-312.

[38] 夏军.变化环境下长江流域滨海城市供水安全与适应性对策[J].南水北调与水利科技(中英文),2024,22(2):209-214.XIA J.Water security and adaptive management for coastal cities of Yangtze River basin under changing environment[J].South-to-North Water Transfers and Water Science & Technology,2024,22(2):209-214.

[39] HAMED H K.Trend detection in hydrologic data:The Mann-Kendall trend test under the scaling hypothesis[J].Journal of Hydrology,2008,349(3-4):350-363.

[40] ZHAO Y F,ZOU X Q,CAO L G,et al.Changes in precipitation extremes over the Pearl River Basin,southern China,during 1960—2012[J].Quaternary International,2014,333:26-39.

[41] HU C X,FUNG K Y,TAM C Y,et al.Urbanization impacts on pearl river delta extreme rainfall sensitivity to land cover change versus anthropogenic heat[J].Earth and Space Science,2021,8(3):e2020EA001536.

[42] SHI C,JIANG H Z,CHEN L W,et al.Changes in temperature extremes over China under 1.5 ℃ and 2 ℃ global warming targets[J].Advances in Climate Change Research,2018,9(2):120-129.

[43] ADLER F R,GU G,WANG J,et al.Relationships between global precipitation and surface temperature on interannual and longer timescales (1979—2006)[J].Journal of Geophysical Research:Atmospheres,2008,113:D22.

[44] 黄强,陈子燊.全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J].地球科学进展,2014,29(8) :956-967.HUANG Qiang,CHEN Zishen.A regional study on the spatiotemporal variations of extreme temperature and precipitation events in the Pearl River Basin under the background of global warming [J].Advances in Earth Science,2014,29(8):956-967.

[45] 王天,涂新军,周宗林,等.基于CMIP6的珠江流域未来干旱时空变化[J].农业工程学报,2022,38(11):81-90.WANG Tian,TU Xinjun,ZHOU Zonglin,et al.Spatiotemporal variations of future drought in the Pearl River Basin based on CMIP6[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(11):81-90.

[46] 汤秋鸿,徐锡蒙,周羽暄,等.全球变化背景下黄河流域水旱灾害演变及应对策略[J].水利发展研究,2025,25(2):13-20.TANG Qiuhong,XU Ximeng,ZHOU Yuxuan,et al.Evolution of floods and droughts in the Yellow River Basin under global change and relevant coping strategies[J].Water Resources Development Research,2025,25(2):13-20.

[47] TAN X Z,WU X X,HUANG Z Q,et al.Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions[J].Nature Communications,2023,14(1):2796.

基本信息:

DOI:10.13928/j.cnki.wrahe.2025.08.001

中图分类号:P429

引用信息:

[1]周彪,温姗姗,蒋富霜,等.1961—2020年珠江流域极端气温和降水复合事件的时空演变特征分析[J].水利水电技术(中英文),2025,56(08):1-18.DOI:10.13928/j.cnki.wrahe.2025.08.001.

基金信息:

国家自然科学基金项目(42005126)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索