| 95 | 0 | 235 |
| 下载次数 | 被引频次 | 阅读次数 |
【目的】完善的地下排水系统对于提升暴雨情景下变电站地下管网的排水能力和确保电力设施的安全运行具有重要意义。【方法】以广东省揭阳市某待建变电站为研究区,设计了一种新的地下排水系统,并提出了“圆管模型”和渗流模型耦合模拟的等效渗透系数方法,构建了应对场次暴雨情景的地下管网排水效果评价数值模型。通过对变电站建设前的地下水调查数据进行参数校准,评估了新排水系统在6种暴雨情景下的排水流量、地下水位动态变化以及积水区的时空分布特征。【结果】结果表明:新的地下排水系统能够有效排水并降低管网周边的地下水位。暴雨后变电站核心区的地下水位变化呈现缓慢上升和缓慢下降的趋势,而周边地下水位则表现出快速上升和快速下降的规律。在50 a一遇和100 a一遇的小时和分钟暴雨情景下,新地下排水系统表现出优良的性能,不会出现积水现象;然而,研究区西南侧出现明显积水,且持续7 d的暴雨所形成的积水在4 d后方可消退。【结论】基于等效渗透系数方法模拟的场次暴雨情景下新的地下排水系统排水能力较好,可为变电站排水管网排水能力的评估及优化设计提供一种有效手段。
Abstract:[Objective]A well-developed underground drainage system is crucial for enhancing the drainage capacity of underground pipeline networks in substations under heavy rainfall scenarios and ensuring the safe operation of power facilities.[Methods]Taking a planned substation in Jieyang City, Guangdong Province, as the study area, a new underground drainage system was designed. An equivalent permeability coefficient method, coupling the “circular pipe model” and the seepage model, was proposed. A numerical model was established to evaluate the drainage performance of the underground pipe network under episodic heavy rainfall scenarios. By calibrating parameters using groundwater survey data before the construction of the substation, the drainage flow, groundwater level dynamics, and the spatiotemporal distribution characteristics of water accumulation areas under six heavy rainfall scenarios were assessed.[Results]The result showed that the new underground drainage system could effectively drain water and reduce groundwater levels around the pipeline network. After heavy rainfall, the groundwater level in the core area of the substation exhibited a trend of gradual rise and slow decline, while the surrounding groundwater levels demonstrated a pattern of rapid rise and rapid decline. Under the 50-year and 100-year return period hourly and minute-scale heavy rainfall scenarios, the new underground drainage system exhibited excellent performance, with no water accumulation. However, under daily-scale heavy rainfall scenarios of the same return periods, significant water accumulation occurred in the southwestern part of the study area, and the accumulated water from a continuous 7-day rainfall event took 4 days to recede.[Conclusion]The new underground drainage system, simulated using the equivalent permeability coefficient method under episodic heavy rainfall scenarios, demonstrates good drainage capacity, which provides an effective approach for evaluating and optimizing the drainage capacity of substation drainage networks.
[1] 周刚,徐伟,陈刚,等.变电站智能排水系统的研制[J].华东电力,2013,41(7):1555-1557.ZHOU G,XU W,CHEN G,et al.Development of substation smart drainage system[J].East China Electric Power,2013,41(7):1555-1557.
[2] 李新海,曾令诚,刘文平,等.变电站微机控制强排水控制系统研究与应用[J].电工电气,2021(12):36-39.LI X H,ZENG L C,LIU W P,et al.Research and application of microcomputer controlled forced drainage control system for substation[J].Electrotechnics Electric,2021(12):36-39.
[3] KHODR H M,SALLOUM G A,SARAIVA J T,et al.Design of grounding systems in substations using a mixed-integer linear programming formulation[J].Electric Power Systems Research,2009,79(1):126-133.
[4] 鲁佳慧,刘家宏,刘创,等.城市排水系统韧性评估研究进展[J].水利水电技术(中英文),2024,55(1):1-10.LU J H,LIU J H,LIU C,et al.Research progress on urban drainage system resilience evaluation[J].Water Resources and Hydropower Engineering,2024,55(1):1-10.
[5] 彭李斌.变电站给排水系统设计探讨[J].建筑监督检测与造价,2019,12(3):54-55.PENG L B.Design of substation water supply and drainage system[J].Supervision Test and Cost of Construction,2019,12(3):54-55.
[6] 高旭浩.绿色智能变电站给排水系统优化设计技术措施研究[J].科技与企业,2013(24):217.GAO X H.Research on optimized design techniques of green intelligent substation water supply and drainage system[J].Science and Technology and Enterprises,2013(24):217.
[7] 袁巧云.变电站地基沉降分析及不良地基处理措施研究[J].建筑技术开发,2016,43(5):129-130.YUAN Q Y.Study on settlement measures analysis and bad foundation of substation foundation treatment[J].Building Technology Development,2016,43(5):129-130.
[8] 李晨,陈芸,马斌,等.电力系统中排水泵控制系统的智能化探究[J].科技与创新,2019,23:88-89.LI C,CHEN Y,MA B,et al.Exploration of intelligent control systems for drainage pumps in electrical power systems[J].Science and Technology & Innovation,2019,23:88-29.
[9] 姚晗,陈晨,姚若夫.基于 “海绵城市” 理念对某变电站排水系统的优化设计[C] //中国电力规划设计协会.2016 年供用电设计技术交流会.北京:中国电力规划设计协会,2016:969-972.YAO H,CHEN C,YAO R F.Optimized design of a substationdrainage system based on the “ Sponge City” concept [C] //China electric power planning and design association.Technical exchange meeting on power supply and design technology.Beijing:China electric power planning and design association,2016:969-972.
[10] 陈敬佑.干旱地区变电站排水系统的优化设计[J].云南电业,2015(6):39-40.CHEN J Y.Optimized design of drainage systems for substations in arid regions[J].Yunnan Electric Power,2015(6):39-40.
[11] 魏书仪,刘非,袁绍春,等.基于SWMM和FVCOM模型的城市多级排水系统改造模拟研究[J].水利水电技术(中英文),2024,55(12):29-39.WEI S Y,LIU F,YUAN S C,et al.Simulation study of urban multistage drainage system modification based on SWMM and FVCOM model[J].Water Resources and Hydropower Engineering,2024,55(12):29-39.
[12] 卢兴超,徐宗学,李永坤,等.基于SWMM与LISFLOOD-FP耦合模型的城市街区内涝模拟研究[J].水资源保护,2024,40(3):98-105.LU X C,XU Z X,LI Y K,et al.Research on urban block waterlogging simulation based on coupling model of SWMM and LISFLOOD-FP[J].Water Resources Protection,2024,40(3):98-105.
[13] 刘浚泉,卢兴超,赵树旗.我国北方平原城市社区内涝防控设计方法[J].水电能源科学,2023,41(7):106-109.LIU J Q,LU X C,ZHAO S Q.Design method for flood control in urban communities in the northern Plains of China[J].Water Resources and Power,2023,41(7):106-109.
[14] ZHAI H J,WANG J,WANG N N.Study on influencing factors and estimation model of the water supply and drainage structure cost in substation[J].Mathematical Problems in Engineering,2022,2022(1):8453899.
[15] RATHOD S,DAHIWALKAR S,GORANTIWAR S,et al.Calibration of DRAINMOD for prediction of water table depths and drain discharges under waterlogged Vertisols of Maharashtra,India[J].Journal of Applied and Natural Science,2019,11(3):724-731.
[16] MALOTA M,SENZANJE A.Modelling mid-span water table depth and drainage discharge dynamics using DRAINMOD 6.1 in a sugarcane field in Pongola,South Africa[J].Water,2015,41(3):325.
[17] GüNG?R K,BAH?ECI B.Performance assessment of subsurface drainage systems in the Harran Plain of the South-East Anatolian region of Turkey[J].Irrigation and Drainage,2023,72(2):487-502.
[18] 李彦鑫,徐丽,齐菲,等.滨海盐碱农田暗管排盐渗流场模拟[J].中国生态农业学报(中英文),2023,31(7):1110-1120.LI Y X,XU L,QI F,et al.Seepage field simulation of subsurface pipe salt drainage processes in coastal saline-alkali farmland[J].Chinese Journal of Eco-Agriculture,2023,31(7):1110-1120.
[19] 钱争,冯绍元,庄旭东,等.基于RZWQM2模型的农田排水暗管优化布置研究[J].灌溉排水学报,2021,40(7):113-121.QIAN Z,FENG S Y,ZHUANG X D,et al.Using root zone water quality model to optimize subsurface drain in Hetao irrigation district[J].Journal of Irrigation and Drainage,2021,40(7):113-121.
[20] ABDELMAGEED N B,EIHAZEK A N.Subsurface drainage impact assessment-in ibshan,Egypt[J].Journal of Environmental Science and Engineering (B),2013,2(9):527-531.
[21] 谢家峰,蒋帅,刘斌,等.琴台美术馆屋面雨水排放系统设计分析[J].给水排水,2024,60(1):90-96.XIE J F,JIANG S,LIU B,et al.Qintai art gallery roof drainage system design[J].Water & Wastewater Engineering,2024,60(1):90-96.
[22] 陈翠珍,符韵,蒋佳鑫,等.武汉市蔡甸东湖水系排水能力评估研究[J].给水排水,2023,59(S1):106-110.CHEN C Z,FU Y,JIANG J X,et al.Assessment of drainage capacity of Caidian east lake water system in Wuhan[J].Water & Wastewater Engineering,2023,59(S1):106-110.
[23] DIERSCH H J G.In FEFLOW:Finite Element Modeling of Flow,Mass and Heat Transport in Porous and Fractured Media[M].Berlin,Heidelberg:Springer,2014.
[24] 陈崇希,唐仲华,胡立堂.地下水流数值模拟理论方法及模型设计[M].北京:地质出版社,2014.CHEN C X,TANG Z H,HU L T.Theoretical methods and model design for numerical simulation of groundwater flow[M].Beijing:Geological Publishing House,2014.
[25] LI Y,PAN L H,ZHANG K N,et al.Numerical modeling study of a man-made low-permeability barrier for the compressed air energy storage in high-permeability aquifers[J].Applied Energy,2017,208:820-833.
[26] 陈崇希,胡立堂.渗流-管流耦合模型及其应用综述[J].水文地质工程地质,2008,35(3):70-75.CHEN C X,HU L T.A review of the seepage-pipe coupling model and its application[J].Hydrogeology & Engineering Geology,2008,35(3):70-75.
[27] HU L T,PAN L H,ZHANG K N.Modeling brine leakage to shallow aquifer through an open wellbore using T2WELL/ECO2N[J].International Journal of Greenhouse Gas Control,2012,9:393-401.
[28] LIU R C,YU L Y,JIANG Y J,et al.Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks[J].Journal of Natural Gas Science and Engineering,2017,45:771-785.
[29] LUO X,CHENG Y Y,TAN C Q.Calculation method of equivalent permeability of dual-porosity media considering fractal characteristics and fracture stress sensitivity[J].Journal of Petroleum Exploration and Production Technology,2023,13(8):1691-1701.
[30] SUN K N,HU L T,LIU X M.The influences of sponge city construction on spring discharge in Jinan city of China[J].Hydrology Research,2020,51(5):959-975.
[31] 柏平,臧文斌,张红萍,等.城市构筑物暴雨内涝分层模拟技术及应用[J].中国水利水电科学研究院学报(中英文),2023,21(2):116-127.BAI Ping,ZANG Wenbin,ZHANG Hongping,et al.A stratified modeling approach to flooding at urban infrastructures[J].Journal of China Institute of Water Resources and Hydropower Research,2023,21(2):116-127.
[32] 张建云.水文学手册[M].北京:科学出版社,2002.ZHANG Jianyun.Handbook of Hydrology[M].Beijing:Science Press,2002.
[33] 任泽凌,李彬权,王国庆,等.城市暴雨强度公式复核:以杭州主城区为例[J].南水北调与水利科技(中英文),2024,22(1):80-89.REN Z L,LI B Q,WANG G Q,et al.Revisited urban rainfall intensity formula:An example of the main urban area of Hangzhou[J].South-to-North Water Transfers and Water Science & Technology,2024,22(1):80-89.
基本信息:
DOI:10.13928/j.cnki.wrahe.2025.08.020
中图分类号:TM63;TU992
引用信息:
[1]陶冶,罗苑萍,曾庆彬,等.场次暴雨情景下变电站地下排水性能的有效评估[J].水利水电技术(中英文),2025,56(08):263-273.DOI:10.13928/j.cnki.wrahe.2025.08.020.
基金信息:
清华大学-宁夏银川水联网数字治水联合研究院专项统筹重点项目(SKL-IOW-2023TC2307); 国家自然科学基金核技术创新联合基金项目(U2167211); 广东揭阳惠来园区输交电工程项目(0352004823220005)