基于SVM的岩体灌浆可灌性分析预测模型Groutability analysis and prediction model for grouting of rock mass based on SVM
王昶磊,刘宽,张扬,翟秋凤,冯俊祥
摘要(Abstract):
影响岩体可灌性因素众多,特别是对于隐蔽的岩体裂隙用经验公式判断可灌性准确性较低。针对上述问题,从实现对岩体可灌性的快速准确分析的目的出发,利用支持向量机方法建立岩体可灌性分析预测模型。通过分析可灌性的影响因素,考虑灌浆数据集的小样本特性,分别建立岩体注灰量回归预测SVR模型和岩体可灌性分类预测SVM模型。进一步通过改进灰狼优化算法和增强鲸鱼优化算法,对基于支持向量机的预测模型的进行惩罚因子C、核函数参数g进行寻优。结果表明,通过与其他预测模型相比,所提出的可灌性预测模型分类预测准确率提高约6.5%,并具有收敛速度快的明显优势,验证了基于支持向量机的岩体可灌性分析预测模型的准确性和有效性。
关键词(KeyWords): 可灌性预测;支持向量机;注灰量预测;群智能优化;岩体灌浆
基金项目(Foundation): 国家重点研发计划(2021YFC3090103);; 天津大学自主创新基金(2023XJD-0065)
作者(Author): 王昶磊,刘宽,张扬,翟秋凤,冯俊祥
DOI: 10.13928/j.cnki.wrahe.2025.S1.057
参考文献(References):
- [1] 宿辉,王丽影,牛贝贝.均匀粗砂层中灌浆机理细观数值模拟研究[J].水利水电技术,2013,44(10):73-76.
- [2] 张泽甫,成远登,丁文云,等.基于离散元模拟的黏土劈裂注浆扩散特性 [J].长江科学院院报,2022,39 (12):154-160.
- [3] 罗平平.裂隙岩体可灌性及灌浆数值模拟研究[D].南京:河海大学,2006.
- [4] EKLUNDL D,STILLE H.Penetrability due to filtration tendency of cement-based grouts [J].Tunnelling and Underground Space Technology,2008,23(4):389-398.
- [5] 樊贵超,钟登华,任炳昱,等.基于分形理论的坝基裂隙岩体注灰量与导水率关系研究 [J].水利学报,2017,48 (5):576-587.
- [6] 曾国华,肖承京.透水性红砂岩防渗帷幕丙烯酸盐化学灌浆试验研究[J].长江科学院院报,2023,40(2):136-140.
- [7] XU Y,LI C S,ZHANG X.Development of model test system for grouting simulation in flowing water and study of the diffusion form of anti-dispersion grout[J].Applied Mechanics and Materials,2011,1446(90-93):208-212.
- [8] 崔溦,王利新,江志安,等.基于修正立方定律的岩体粗糙裂隙网络注浆过程模拟研究[J].岩土力学,2021,42(8):2250-2258.
- [9] 邓韶辉,王晓玲,敖雪菲,等.大坝基岩帷幕宾汉姆浆液灌浆的三维数值模拟[J].水利学报,2016,47(2):165-172.
- [10] LIAO K,FAN J,HUANG C.An artificial neural network for groutability prediction of permeation grouting with microflne cement grouts[J].Computers and Geotechnics,2011,38(8):978-986.
- [11] CHENG M Y,HOANG N D.Groutability prediction of microfine cement based soil improvement using evolutionary LS-SVM inference model[J].Journal of Civil Engineering and Management,2014,20(6):839-848.
- [12] FENG S X,ZHAO Y F,WANG Y J,et al.A comprehensive approach to karst identification and groutability evaluation:A case study of the Dehou reservoir,SW China[J].Engineering Geology,2020,269:105529.
- [13] DENG S H,WANG X L,ZHU Y F,et al.Hybrid grey wolf optimization algorithm-based support vector machine for groutability prediction of fractured rock mass [J].Journal of Computing in Civil Engineering,2019,33(2):04018065.